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The techniques of solid-phase organic synthesis have
recently been applied to the generation of libraries of small
organic molecules via combinatorial chemistry for drug
discovery.1 In addition to providing a facile entry into
molecular diversity, solid-phase synthesis can address prob-
lems in organic chemistry that cannot be solved via solution
chemistry.2 We have recently described the application of
the tandem Diels-Alder cycloaddition to the synthesis of
polycyclic ring systems with exceedingly high levels of
stereochemical control.3 This 1:1 dimerization of a bis-diene
and a bis-dienophile, as shown in Scheme 1, leads to the
stereoselective formation of the tricyclic product 3 from the
acyclic precursors 1 and 2. The coupling of 1 and 2 could
also lead to an oligomerative process, as shown in 4. The
efficient control of such an oligomerization could lead to a
novel approach to the synthesis of homogeneous high-
molecular weight materials that could serve as molecular
scaffolds4 and components for the synthesis of macromo-
lecular devices.5 However, the oligomerative cycloaddition
of 1 and 2 in solution cannot readily be controlled. We report
herein that oligomerization in this system can be precisely
controlled in an iterative manner using solid-support
technology.6-8

Acylation of (hydroxymethyl)polystyrene resin 5 (BACHEM,
0.37 mmol/g) with acryoyl chloride (10 equiv) led to the

formation of polymer-bound dienophile 6 in greater than
>95% loading yield.9,10 The immobilization of the dienophile
facilitates the monoreaction of 7 with 6 to give 8 via exposure
of 6 to an excess of bisdiene 7 (6 equiv, toluene reflux, 4
h).11 The success of this first cycloaddition was confirmed
by cleavage of the Diels-Alder adduct from the resin with
Triton B and methyl iodide, affording methyl ester 9 in 91%
overall yield as a mixture of cis and trans isomers.12 The
advantage of the cycloaddition using solid supports is
underscored by the preparation of the same product 9 in only
51% yield in toluene solution from methyl acrylate and the
same excess of bis-diene employed above.

The second cycloaddition was performed on the im-
mobilized diene 8 with 6.5 equiv of the bisdienophile divinyl
ketone 10 in the presence of 15 equiv of ZnCl2 to give 11,
establishing the viability of the iterative cycloaddition reac-
tions of both bis-diene 7 and bis-dienophile 10 on the solid
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support. The remaining dienophilic moiety in 11 was
“capped” with piperylene (16 equiv, 16 equiv of ZnCl2) to give

a new product 12. Reaction of 12 with Triton B and
iodomethane resulted in cleavage of the tricyclic Diels-Alder
adduct from the polymer to give methyl ester 13 (70% yield
over the three steps from 8) as a mixture of six diastereomers
as determined by 500 MHz 1H NMR.

Comparison of the efficiency of the overall transformation
of 6 to 12 with the corresponding reactions in solution (using
the same stoichiometries of bis-diene and bis-dienophile)
reveals the importance of the solid support to the success of
this sequence. The reaction of 9 with divinyl ketone 10 (6
equiv, 6 equiv of ZnCl2) led to the formation of the methyl
ester corresponding to 8 in 60% yield, and the reaction of 8
with an excess of piperylene gave 13 in 79% yield. The
overall yield of this triple Diels-Alder sequence on the
polymer support is >65%, an almost 3-fold increase in
efficiency over the same reactions in solution (24% overall
yield).

To establish that the mixture of isomers represented by
13 did not include regioisomeric products, we examined the
aromatization of 13, which would lead to the convergence
of stereoisomers, but not regioisomers, to a single product.
Exposure of 13 to Pd/C in m-dichlorobenzene led to the
formation of a single aromatic product 14 in 75% yield,
establishing the viability of this approach for the controlled
synthesis of oligomeric materials. Studies in our laboratory
directed toward the control of the stereoselectivity of the
oligomerization are currently underway, and our results will
be reported in due course.
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